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Generic features of fluctuations in critical systems
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The probability distribution function of magnetization of critical magnetic systems is investigated with
Monte Carlo simulations. Its generic features beyond the standard universality are revealed. A mean field
ansatz explains the phenomena partly.
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Recently, much attention has been drawn to fluctuati
of correlated systems@1–7#. In an experiment of a close
turbulent flow, it is discovered that the probability distrib
tion function ~PDF! of the power fluctuations exhibits th
same form as that of the magnetization of the 2D~two-
dimensional! XY model in the spin-wave regime@2#. The
finite Reynolds number Re of the turbulent flow is compa
with the finite sizeL of theXY model. The suitably rescale
PDF’s with different Re’s collapse onto a single curve as
data do for differentL ’s in the XY model. The PDF’s for
both systems overlap at least in four orders of magnitu
The curve is non-Gaussian and with an exponential-like t
These observations indicate that PDF’s of correlated syst
in different universality classes may share approximately
same form.

Based on the hint of the turbulent-flow experiment, n
merical simulations for a variety of highly correlated sy
tems, including the Ising model and some self-organized s
tems, have been performed and PDF’s of the correspon
global observables are measured@5#. It is suggested that the
PDF’s of these systems indeed exhibit approximately
same form, and only minor perturbations in PDF’s lead
different universality classes. Some features of this phen
enon seems even to go beyond the critical system, e.g., to
1D and 3DXY models@8#.

In Ref. @9#, it is shown that for a critical system, th
standard scaling form at the critical point is a sufficient co
dition for the data collapse of differentL ’s. In critical phe-
nomena, it is generally believed that PDF’s are classified
universality classes@10–12#. Therefore, the suggestion i
Ref. @5# seems contradicting the standard idea of universa
To examine this, simulations have been performed for
Ising and 2DXY models@7#. It is found that PDF’s of these
systemsat the critical temperatures differ significantly. How
ever, for the 2D Ising model at a certain temperatureT below
the critical temperatureTc , the PDF looks approximately th
same as that of theXY model in the spin-wave regime. Th
PDF of the 2D Ising model at this temperature is very d
ferent from that atTc .

Although a ‘‘superuniversal’’ behavior does not exist f
the PDF’s atTc , it is still puzzling and very interesting as t
what is hidden behind the fact that the PDF’s of differe
systems at certain temperatures incritical regime join to-
gether. In this paper, critical systems with a second-or
phase transition are mainly concerned, but general impl
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tion of the conclusions will be discussed. All data are o
tained with standard local Monte Carlo algorithms.

We first examine and formulate more clearly and p
cisely the observations in Refs.@5,7#. Introducing the re-
duced magnetizationm5(M2^M &)/s with M being the
magnetization,̂M & being its mean ands being the standard
deviation, we denote the normalized PDF asP(m). In Refs.
@2,5,8#, P(m) of the 2DXY model in the spin-wave regime
is suggested to beT andL independent. For the systems wi
a second-order phase transition, the PDF in critical reg
depends onK;1/T and L through a scaling variables
5L1/n(K2Kc)/Kc , and sometimes is written asP(m,s) @7#.
sn represents the ratio of the lattice size and the correla
length atK.

Rigorously speaking,P(m) of the 2DXY model depends
slightly onT in the regime close to the transition temperatu
TKT , and it becomesT independent only in lower tempera
tures. In Fig. 1, stars representP(m) of the 2DXY model at
T50.89, just belowTKT @13#, while squares are forT
50.70. As is observed in Ref.@5#, the left tail ofP(m,s) of
the 2D Ising model ats57.26~dashed line! fits nicely to the
squares, but there is a deviation for the right tail. We emp

FIG. 1. Stars and squares are for theXY model withL564 at
T50.89 and 0.70, respectively. The solid line is for the 2D Isi
model with K50.4707 andL564, i.e., s54.36 (Kc50.4407),
while the dashed line is withK50.4657 andL5128, i.e., s
57.26. Circles are for the 3D Ising model withK50.2237 andL
532, i.e.,s52.21 (Kc50.2217,n50.63 @16#!.
©2003 The American Physical Society14-1
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size that the deviation is not from statistical errors or/a
finite size effects. On the other hand, as is pointed out in R
@7#, P(m,s) of the 2D Ising model ats54.36 ~solid line!
coincides better with the stars, though not perfectly for
left tail. ~Data here are recorded in smallerDM and also
more accurate than those in Ref.@7# with s52.90.! More
interestingly, P(m,s) of the 3D Ising model ats52.21
~circles! falls onto the solid line almost completely.

Is it accidental that the PDF’s of the three models join
a specific curve? Our first observation is that it isnot acci-
dental at least for the Ising models. Actually,P(m,s)’s of the
2D and 3D Ising models overlap in whole larges regime.
This is demonstrated in Fig. 2.P(m,s)’s of the 2D Ising
model withs54.36, 8.72, and 21.58 fit very well to those
the 3D Ising model withs52.21, 4.42, and 11.05, respe
tively. In other words,P(m,s)’s of the 2D and 3D Ising
models are the same in larges regime if s of the 3D Ising
model is rescaled by a factor of about 2. This is a gene
feature beyond the standard universality. The left tail o
P(m,s) of the 2D Ising model arounds58.72 looks
exponential-like.P(m,s) crosses over gradually to Gaussi
ass increases. In the remaining part of the paper,P(m,s)’s
of other systems will be always compared with the data
the 2D Ising model withs54.36, 8.72, and 21.58.

In order to understand the generic feature ofP(m,s)
shown in Fig. 2, we turn to the scalarf4 theory, which is
believed to be the mesoscopic theory of the Ising model.
D-dimensionalf4 theory falls into the universality class o
the D-dimensional Ising model. It has been demonstrated
Ref. @11# that P(m,s)’s of both systems present the sam
form in small s regime. On a square or cubic lattice, th
Hamiltonian of theD-dimensionalf4 theory is

H5(
i

F1

2 (
m

~f i 1m2f i !
22

1

2
m0

2f i
21

1

4
l0f i

4G . ~1!

FIG. 2. The solid, dashed, and long dashed lines are for the
Ising model with (K,L)5(0.4707,64), (0.4707,128), an
(0.5157,128)~i.e., s54.36, 8.72, and 21.58), respectively. Circle
stars, and squares are for the 3D Ising model with (K,L)
5(0.2237,32), (0.2257,32), and (0.2317,32)~i.e., s52.21, 4.42,
and 11.05).
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Herem represents unit vectors in spatial directions. The te
peratureT;1/K can be absorbed into the couplingl0.
Therefore, l0;1/K. Monte Carlo simulations of thef4

theory are much more time consuming than those of
Ising model. In Fig. 3,P(m,s)’s of the 2D f4 theory with
s53.14, 6.05, and 14.19 are compared with those of the
Ising model withs54.36, 8.72, and 21.58. In Ref.@11#, it is
found that even in smalls regime, there are corrections t
scaling forP(m,s) of the 2Df4 theory. Therefore, the fitting
of the data for the two models in Fig. 3 is less perfect than
Fig. 2. If we rescales of the 2D f4 theory by a factor of
1.44, the values ofs in Fig. 3 becomes54.53, 8.72, and
20.45 and differ from those of the 2D Ising model by a fe
percent. Part of the deviation is also from finite size effec
Taking into account the difficulties in simulating thef4

theory, we are satisfied with the results and consider
P(m,s)’s of the 2D Ising model andf4 theory are the same
in large s regime. This is more or less expected, since
sameP(m,s)’s of two critical systems in smalls regime
should remain the same in larges regime, if effects of bound-
ary conditions can be neglected. This result also confir
that P(m,s) is indeed universal in the wholes regime for
critical systems in a same universality class.

In the following, we demonstrate that a mean field ans

f if i 1m;cf i
2 , c.0 ~2!

can be a good approximation at the zero order in largs
regime. With this ansatz, the Hamiltonian of thef4 theory is
simply an effectivef4 potential

V52 1
2 me

2f21 1
4 lef

4. ~3!

We simulate this simple system also with Monte Carlo me
ods. As shown in Fig. 3,P(m)’s of V with (me

2 ,le)

D FIG. 3. The solid, dashed, and long dashed lines are the sam
in Fig. 2. Circles, stars, and squares are for the 2Df4 theory with
(K,L)5(0.599,64), (0.625,64), and (0.625,150), i.e.,s53.14,
6.05, and 14.19 (m0

252, Kc50.571). Triangles up and filled tri-
angles down are for the potentialV with (me

2 ,le)5(2,0.11) and
(2,0.05).
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5(2,0.11) and (2,0.05) fit well to those of the 2D Isin
model withs58.72 and 21.58, respectively. No values ofme

2

and le can produceP(m,s) of the 2D Ising model ats
54.36. However, it is interesting thatP(m) with (me

2 ,le)
5(2,1) coincides with that of the 3D Ising model atTc . If
we consider (me

2 ,le)5(2,1) as a ‘‘critical’’ point, (me
2 ,le)

5(2,0.11) and (2,0.05) correspond tos58 and 20. Since
21.58/8.72.20/8;2.5, P(m,s) of V is the same as that o
the 2D Ising model in sufficiently larges regime, e.g.,s
>8.72.

In sufficiently larges regime, the correlation length i
much smaller than the lattice size. Fluctuations are less
portant and the effective potential dominates the behavio
P(m,s). For example, in the simulations of thef4 theory at
s58.72 and 21.58, we observed that withL532 or 64, only
a few percent of the variablesf i ’s take negative values whe
the magnetizationM drops into the positive sector of th
phase space. Mostf i ’s fluctuate around its mean value in th
positive sector. The mean field ansatz makes sense.
larger lattices, moref i ’s become negative, but the standa
scaling form keepsP(m,s) with a fixed s unchanged.
Arounds;4.36, the system starts the crossover to large fl
tuation regime~comparing the correlation length and the la
tice size! and the mean field ansatz fails.

It is shown in Ref.@5# that P(m) of the 2D XY model
presents exponential behavior for the left tail and dou
exponential for the right tail. If we definew5f
2(me

2/le)
1/2, V5me

2w21(me
2le)

1/2w311/4lew
4. Since the

mean valuê f& is close to (me
2/le)

1/2, the ‘‘reduced magne-
tization’’ m;w/s with s being the standard error. Due to th
cubic term ofw, the left tail of P(m) of V around (me

2 ,le)
5(2,0.11) looks approximately exponential-like up tom
;8. The right tail ofP(m) of V decays slower than doubl
exponential and faster than Gaussian, and this is in ag
ment with the curve of the Ising model in Fig. 3, and
shown also in Fig. 2 in Ref.@5#.

To show how generic the form ofP(m,s) of the Ising
model in larges regime is, we have finally performed simu
lations for the 2D three-state Potts model. In Fig.
P(m,s)’s with s54.21, 10.95, and 27.70 are compared w
those of the 2D Ising model withs54.36, 8.72, and 21.58
respectively, and they overlap each other. Since 27.70/1
.21.58/8.72;2.5, we conclude that up to a constant fac
of s, P(m,s) of the Potts model withs>10.95 is the same a
that of the Ising model withs>8.72. P(m,s) of the Potts
model in the regime arounds;4.21 is the same as that of th
Ising model arounds;4.36 only up to a nonlinear transfo
mation ofs.

This is an interesting result. In a smalls regime,
P(M ,s)’s of the Ising and Potts models are very differe
@Note thatP(M ,s) is not the same asP(m,s).] Actually,
P(M ,s) of the Potts model is even not symmetric inM. In a
larges regime, however,P(m,s)’s of both systems tend to b
identical. This indicates that incritical regime, the effective
potential V in Eq. ~3! is rather generic, and other possib
terms are irrelevant in the sense of the renormalization gr
transformation. In Fig. 2 in Ref.@5#, P(m)’s of at least, the
2D site percolation model, the granular media model and
02611
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correlated extremal process all show a slower right tail th
double exponential. They should fit better toP(m) of V at
suitable values ofme

2 and le . Due to fluctuations, it is not
clear whether the right tail of the turbulent flow is doub
exponential or slower@2#.

The 2DO(2) model falls into the same universality cla
of the 2DXY model. The potential of theO(2) model is also
f4 like. Due to the rotational degree of freedom, howev
the system undergoes a Kosterlitz-Thouless phase transi
Below the transition temperatureTKT , it remains critical.
Therefore,P(m) of theXY model at low temperatures is no
fully governed byV, and shows only some similar features
shown in Fig. 1.

In conclusion, for critical systems with a second-ord
phase transition, the probability distribution functionP(m,s)
exhibits a rather generic form in larges regime. In suffi-
ciently larges regime, e.g.,s>8.72 for the 2D Ising model,
P(m,s)’s of all the models examined in this paper share
same form~up to a constant factor ofs). This form of
P(m,s)’s can be described by an effective potentialV in Eq.
~3!, which corresponds a mean field Ansatz of thef4 theory.
P(m)’s of some other correlated systems discussed in R
@5# should also fall into this form.P(m) of V around
(me

2 ,le)5(2,0.11) shows approximately exponential-lik
behavior for the left tail. This characterizes the PDF’s of t
2D XY model in the spin-wave regime and the closed turb
lent flow.

In medium-larges regime, e.g.,s;4.36 for the 2D Ising
model,P(m,s)’s of different systems split according to sym
metries. ButP(m,s) of the 2D Potts model can still be pro
jected approximately onto that of the Ising model through
nonlinear transformation ofs. In this regime, the system
start the crossover to large fluctuation regimes and the m
field ansatz fails. However, it is interesting whyP(m,s) re-
mains relatively generic, e.g., dimension independent. M

FIG. 4. The solid, dashed, and long dashed lines are the sam
in Fig. 2. Circles, stars, and squares are for the 2D Potts model
(K,L)5(1.030,72), (1.070,72), and (1.070,156)~i.e., s54.21,
10.95, and 27.70).
4-3



t
es

es
a

the
ion

B. ZHENG PHYSICAL REVIEW E 67, 026114 ~2003!
understanding is needed here.
For smallers, P(m,s) will become dimension dependen

and will be classified finally by standard universality class
What is the deeper physical impact of the generic feature
P(m,s) in larges regime, and whether and how it classifi
critical systems beyond standard universality classes,
02611
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very important open problems. Study of the PDFP(m,s,t)
in nonequilibrium dynamics@14,15# is undergoing.
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