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Generic features of fluctuations in critical systems
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The probability distribution function of magnetization of critical magnetic systems is investigated with
Monte Carlo simulations. Its generic features beyond the standard universality are revealed. A mean field
ansatz explains the phenomena partly.
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Recently, much attention has been drawn to fluctuationsion of the conclusions will be discussed. All data are ob-
of correlated systemgl-7]. In an experiment of a closed tained with standard local Monte Carlo algorithms.
turbulent flow, it is discovered that the probability distribu- We first examine and formulate more clearly and pre-
tion function (PDP) of the power fluctuations exhibits the cisely the observations in Ref§5,7]. Introducing the re-
same form as that of the magnetization of the @o- duced magnetizatiom=(M—(M))/c with M being the
dimensional XY model in the spin-wave regimg2]. The — Mmagnetization(M) being its mean and being the standard
finite Reynolds number Re of the turbulent flow is compareddeviation, we denote the normalized PDFR{sn). In Refs.
with the finite sizeL of the XY model. The suitably rescaled [2,5.8, P(m) of the 2DXY model in the spin-wave regime
PDF’s with different Re’s collapse onto a single curve as thdS Suggested to béandL independent. For the systems with

data do for different’s in the XY model. The PDF’s for & second-order phase transition, the PDF in critical regime

both systems overlap at least in four orders of magnitudec.iepends onK~1/T and L through a scaling variable

= v _ ; H H
The curve is non-Gaussian and with an exponential-like taiI._VL (K=Kc)/Ke, and sometimes Is written &m.s) [7] .
represents the ratio of the lattice size and the correlation

These observations indicate that PDF’s of correlated systems
ength atk.

;nag:fefefroerrrnrg universality classes may share approximately the Rigorously speakingP(m) of the 2DXY model depends
Based : the hint of the turbulent-i . ; slightly onT in the regime close to the transition temperature
ased on the hint of the turbuient-iow: experiment, nu'TKT, and it becomed independent only in lower tempera-

merical simulations for a variety of highly correlated sys- tures. In Fig. 1, stars represePm) of the 2DXY model at
tems, including the Ising model and some self-organized sysy_ ) gg juét ,belowTKT [13], while squares are fofl

tems, have been performed and PDF's of the corresponding g 70 As is observed in Ref5], the left tail of P(m,s) of
global observables are measuféd It is suggested that the e op Ising model as=7.26 (dashed lingfits nicely to the

PDF's of these systems indeed exhibit approximately theqgyares, but there is a deviation for the right tail. We empha-
same form, and only minor perturbations in PDF's lead to

different universality classes. Some features of this phenom. 10° - - - .
enon seems even to go beyond the critical system, e.g., to th
1D and 3DXY models[8]. P(m)
In Ref. [9], it is shown that for a critical system, the _1
standard scaling form at the critical point is a sufficient con- !
dition for the data collapse of differeft’s. In critical phe-
nomena, it is generally believed that PDF’s are classified by
universality classe$10—12. Therefore, the suggestion in 10
Ref.[5] seems contradicting the standard idea of universality.
To examine this, simulations have been performed for the
Ising and 2DXY models[7]. It is found that PDF'’s of these
systemsat the critical temperatures differ significantly. How- 1
ever, for the 2D Ising model at a certain temperafliteelow
the critical temperatur&., the PDF looks approximately the
same as that of th&Y model in the spin-wave regime. The ‘
PDF of the 2D Ising model at this temperature is very dif- 60 40 20 0.0 50 2.0
ferent from that aff .. ’ ' ' com ' '
Although a “superuniversal” behavior does not exist for £ 1. stars and squares are for %¥ model with L =64 at
the PDF's aff, it s still puzzling and very interesting as to T=0.89 and 0.70, respectively. The solid line is for the 2D Ising
what is hidden behind the fact that the PDF's of differentmodel with K=0.4707 andL=64, i.e., s=4.36 (K.=0.4407),
systems at certain temperaturesdiritical regime join to-  while the dashed line is wittK=0.4657 andL=128, i.e., s
gether. In this paper, critical systems with a second-orde&7.26. Circles are for the 3D Ising model wikh=0.2237 and_
phase transition are mainly concerned, but general implica=32, i.e.,s=2.21 (K,=0.2217,v=0.63[16)).
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FIG. 2. The solid, dashed, and long dashed lines are for the 2D FIG. 3. The solid, dashed, and long dashed lines are the same as
Ising model with K,L)=(0.4707,64), (0.4707,128), and in Fig. 2. Circles, stars, and squares are for the¢@theory with
(0.5157,128)i.e.,s=4.36, 8.72, and 21.58), respectively. Circles, (K,L)=(0.599,64), (0.625,64), and (0.625,150), i.e=3.14,
stars, and squares are for the 3D Ising model with,L( 6.05, and 14.19r3=2, K.=0.571). Triangles up and filled tri-
=(0.2237,32), (0.2257,32), and (0.2317,32p., s=2.21, 4.42, angles down are for the potentigl with (m?,\.)=(2,0.11) and
and 11.05). (2,0.05).

size that the deviation is not from statistical errors or/andgre , represents unit vectors in spatial directions. The tem-
finite size effects. On the other hand, as is pointed out in RefperatureT~1/K can be absorbed into the coupling,.

[7], P(m,s) of the 2D Ising model as=4.36 (solid lin®  Therefore, Ao~ 1/K. Monte Carlo simulations of thep*
coincides better with the stars, though not perfectly for thetheory are much more time consuming than those of the

left tail. (Data here are recorded in small&iM and also Ising model. In Fig. 3P(m,s)’s of the 2D ¢* theory with

more accurate than those in R¢T] with s=2.90) More  _3 14 605 and 14.19 are compared with those of the 2D

interestingly, P(m,s) of the 3D Ising model ats=2.21 |ging model withs=4.36, 8.72, and 21.58. In RdfL1], it is

(cwclgs) fal!s onto the solid Ilne,almost completely. .. _found that even in smak regime, there are corrections to
Is it accidental that the PDF’s of the three models join atscaling forP(m,s) of the 2D ¢* theory. Therefore, the fitting

a specific curve? Our fi_rst observation is that inist acci- of the data for the two models in Fig. 3 is less perfect than in
dental at least for the Ising models. Actual®(m,s)’s of the Fig. 2. If we rescales of the 2D 4% theory by a factor of

2D and 3D Ising models overlap in whole largeegime. 1.44, the values o§ in Fig. 3 becomes=4.53, 8.72, and

This is Qemonstrated in Fig. P.(m,s)’s of the 2D lIsing 20.45 and differ from those of the 2D Ising model by a few
model withs=4.36, 8.72, and 21.58 fit very well to those of o cant part of the deviation is also from finite size effects.
the 3D Ising model WIﬂ‘B=2.2’1, 4.42, and 11.05, réspec- Taying into account the difficulties in simulating thg*
tively. In other words,P(m,s)'s of the 2D and 3D Ising ey we are satisfied with the results and consider that
models_ are the same in largeregime if s of thg C_’uD Ising _P(m,s)’s of the 2D Ising model and* theory are the same
model is rescaled by a factor of about 2. This is a generiG, 5146 5 regime. This is more or less expected, since the
feature beyondthe standard universality. The left tail of sameP(m,s)’s of two critical systems in smalb regime

P(m,s) of the 2D Ising model arounds=8.72 100ks  gpq 14 remain the same in largeegime, if effects of bound-
exponential-likeP(m,s) crosses over gradually to Gaussian 5y congitions can be neglected. This result also confirms

assincreases. In the remaining part of the pag¥in,s)’s  yha; p(m,s) is indeed universal in the whole regime for
of other systems will be always compared with the data of.icql systems in a same universality class.

the 2D Ising model witts=4.36, 8.72, and 21.58. In the following, we demonstrate that a mean field ansatz
In order to understand the generic feature Rfm,s)

shown in Fig. 2, we turn to the scala” theory, which is &, ¢i+,u~c¢i21 c>0 2

believed to be the mesoscopic theory of the Ising model. The

D-dimensionalg* theory falls into the universality class of can be a good approximation at the zero order in l&ge

the D-dimensional Ising model. It has been demonstrated itegime. With this ansatz, the Hamiltonian of ti#é theory is

Ref. [11] that P(m,s)’s of both systems present the samesimply an effectives* potential

form in small s regime. On a square or cubic lattice, the

Hamiltonian of theD-dimensionalg* theory is V=—1imZp?+ in 0% ®)

We simulate this simple system also with Monte Carlo meth-

1 1 1
= Z )2 Tmihi+ = 4
: Z 2 % (bi+u=b)"= 3Modi+ 7 hodi’|. (1) ods. As shown in Fig. 3P(m)’s of V with (mZ,\,)
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=(2,0.11) and (2,0.05) fit well to those of the 2D Ising 10° . . . :
model withs=8.72 and 21.58, respectively. No valuesmﬁf

and A, can produceP(m,s) of the 2D Ising model as P(m)
=4.36. However, it is interesting th&(m) with (mﬁ,)\e)
=(2,1) coincides with that of the 3D Ising model B¢. If
we consider (2 ,\o)=(2,1) as a “critical” point, (Z,\,)
=(2,0.11) and (2,0.05) correspond $&=8 and 20. Since
21.58/8.72-20/8~ 2.5, P(m,s) of V is the same as that of 10™
the 2D Ising model in sufficiently large regime, e.g.,s
=8.72.

In sufficiently larges regime, the correlation length is
much smaller than the lattice size. Fluctuations are less im- 10
portant and the effective potential dominates the behavior of
P(m,s). For example, in the simulations of th# theory at
s=8.72 and 21.58, we observed that witk 32 or 64, only , ,
a few percent of the variable;’s take negative values when -6.0 -4.0 -2.0 0.0 2.0 4.0
the magnetizatiorM drops into the positive sector of the
phase space. Mogt;’s fluctuate around its mean value in the FIG. 4. The solid, dashed, and long dashed lines are the same as
positive sector. The mean field ansatz makes sense. Ftn' Fig. 2. Circles, stars, and squares are for the 2D Potts model with
larger lattices, moreb;'s become negative, but the standard (K,L)=(1.030,72), (1.070,72), and (1.070,156)e., s=4.21,
scaling form keepsP(m,s) with a fixed s unchanged. 10.95, and 27.70).

Arounds~4.36, the system starts the crossover to large fluc-
tuation regime(comparing the correlation length and the lat- correlated extremal process all show a slower right tail than
tice sizg and the mean field ansatz fails. double exponential. They should fit better R¢m) of V at

It is shown in Ref.[5] that P(m) of the 2D XY model  gyjtable values ofn? and\.. Due to fluctuations, it is not
presents exponential behavior for the left tail and double;ear whether the right tail of the turbulent flow is double
expogenngl2 for t2he2 rlghzt '[Ei/lé. 3h‘ we (zeflr?e<p= b exponential or slowef2].

—(Me/he) ™ V=mge +(me£‘e) ¢°+1/4\c" Since the The 2DO(2) model falls into the same universality class
mean valug ¢) is close to (g/A)* the “reduced magne- ot the 2DX Y model. The potential of th&(2) model is also
tization” m~ ¢/ o with o being the standard error. Dlz,le to the #* like. Due to the rotational degree of freedom, however,
cubic term of, the left tail of P(m) of V.around (Mg, Xe)  the system undergoes a Kosterlitz-Thouless phase transition.
=(2,0.11) looks approximately exponential-like up m  pgejoy the transition temperaturBcr, it remains critical.

~8. The .ri?ht ?i:t ofP(m% of \(/Bdeca'ys slovxéerr:han double herefore P(m) of the XY model at low temperatures is not
exponenna and faster than aussian, an t_|s IS 1n agre%"y governed by, and shows only some similar features as
ment with the curve of the Ising model in Fig. 3, and as g own in Fia. 1
shown also in Fig. 2 in Ref5]. 9.

. . In conclusion, for critical systems with a second-order
To show how generic the form d?(m,s) of the Ising h i ition. th bability distribution functis
model in larges regime is, we have finally performed simu- phase transition, the probability distribution functiBgm,s)

lations for the 2D three-state Potts model. In Fig. 4,6xXNibits a rather generic form in largeregime. In suffi-
P(m,s)’s with s=4.21, 10.95, and 27.70 are compared withciently larges regime, 6'9'528'7,2 for .the ,ZD Ising model,
those of the 2D Ising model wit=4.36, 8.72, and 21.58, P(m,s)’s of all the models examined in this paper share the
respectively, and they overlap each other. Since 27.70/10.988me form(up to a constant factor of). This form of
~21.58/8.72-2.5, we conclude that up to a constant factorP(M,s)’s can be described by an effective potentah Eqg.
of s, P(m,s) of the Potts model witls=10.95 is the same as (3), which corresponds a mean field Ansatz of tfetheory.
that of the Ising model witrs=8.72. P(m,s) of the Potts P(m)’s of some other correlated systems discussed in Ref.
model in the regime aroursh4.21 is the same as that of the [5] should also fall into this form.P(m) of V around
Ising model around~4.36 only up to a nonlinear transfor- (mg,)\e)=(2,0.11) shows approximately exponential-like
mation ofs. behavior for the left tail. This characterizes the PDF’s of the
This is an interesting result. In a small regime, 2D XY model in the spin-wave regime and the closed turbu-
P(M,s)’s of the Ising and Potts models are very different. lent flow.
[Note thatP(M,s) is not the same af(m,s).] Actually, In medium-larges regime, e.g.s~4.36 for the 2D lIsing
P(M,s) of the Potts model is even not symmetricNh Ina  model,P(m,s)’s of different systems split according to sym-
larges regime, howeve?(m,s)’s of both systems tend to be metries. ButP(m,s) of the 2D Potts model can still be pro-
identical. This indicates that iaritical regime, the effective jected approximately onto that of the Ising model through a
potential V in Eq. (3) is rather generic, and other possible nonlinear transformation o$. In this regime, the systems
terms are irrelevant in the sense of the renormalization grouptart the crossover to large fluctuation regimes and the mean
transformation. In Fig. 2 in Ref5], P(m)’s of at least, the field ansatz fails. However, it is interesting wR{m,s) re-
2D site percolation model, the granular media model and thenains relatively generic, e.g., dimension independent. More
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understanding is needed here. very important open problems. Study of the PBFm,s,t)

For smallers, P(m,s) will become dimension dependent in nonequilibrium dynamic$14,15 is undergoing.
and will be classified finally by standard universality classes. \work was supported in part by NNSFChina under
What is the deeper physical impact of the generic feature oGrant No. 10275054, the specialized research fund for the
P(m,s) in larges regime, and whether and how it classifies doctoral program of high education provided by Education

critical systems beyond standard universality classes, algc;gllztf%/ (China, and DFG(Germany under Project No. TR
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